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Stable Adams operations on RO(Cy)-graded
homotopy groups

Anton Engelmann*

Abstract

The Ca-spectrum of Atiyah’s Real K-theory is denoted by KR and
the Cs-spectrum of topological modular forms of level structure I'y(3)
by TMF:(3). In this short note we compute the Cs-equivariant stable
Adams operations on the RO(C2)-graded homotopy groups of KR and
TMF, (3).

1 Introduction

In the study of the connection between elliptic curves and cohomology theories,
Hopkins constructed the universal elliptic cohomology theory TMF of
topological modular forms. This is the spectrum corresponding to the moduli
stack Mgy of elliptic curves. Analog to the situation in classical modular forms,
there exist spectra of topological modular forms of certain level structures. The
moduli stack Mg(n), classifying elliptic curves with a chosen cyclic subgroup
of order n, yields the spectrum TMF(n), and the moduli stack M;j(n), which
classifies elliptic curves with a chosen point of exact order n, has associated
spectrum TMF(n).

Moreover, Adams operations on K-theory proved to be important tools in
the past. Two of the major uses were Adams and Atiyah’s [AAGG] proof of
the Hopf invariant one problem using unstable Adams operations and Quillen’s
computation of the algebraic K-theory of finite fields using stable Adams
operations. As topological modular forms are to be viewed as a higher chromatic
analogue of topological K-theory, it is natural to ask for the existence of stable
Adams operations on the different versions of topological modular forms. These
were constructed by Davies [Dav24, [Dav25a].

Recall that the Cs-action on a complex vector bundle is given by complex
conjugation, which carries over to the spectrum KU of complex K-theory. The
Cy-action on the spectrum TMF;(3) is induced by an underlying action as well:
there is a natural (Z/n)*-action on Mj(n) given by sending the point = of
order n to [k]z for k € (Z/n)*. It follows that both, KU and TMF;(3), can
be made genuinely equivariant with Cs-equivariant stable Adams operations.
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We will denote the Cy-spectra by KR and TMF;(3). There is even more to
say: in both cases the endomorphism [—1] induces the endomorphism % ~! of
spectra. If ¥ is the endomorphism induced by [k] on one of the above spectra,
we even have coherently that ¢~! o 9% ~ ¥ o p~1 and ¥ o ! ~ ¥ making
the 1* Cs-equivariant. These endomorphisms ¢* are then called stable Adams
operations.

The goal of this paper is to compute the Cs-equivariant stable Adams opera-
tions on the representation graded homotopy groups of these Cs-spectra. Since
K-theory and topological modular forms are so closely related it is not surpris-
ing that the result and the strategy for the computations are essentially the
same.

Theorem A (Definition . Let k € 7Z and x € ﬂfijKR[%], where o is the
sign representation of Co. Then

1

YF(z) = ke nC2 KR[k]

a-+bo

In particular, if x is torsion (necessarily 2-torsion), then *(x) = x.

Theorem B (Definition . Letk € Z and x € ijbaTMFl(S)[%], where o
1s the sign representation of Cy. Then

a+b

@) =k"T e wfjbgTMFl(?))[%].

In particular, if z is torsion (necessarily 2-torsion), then ¥*(z) = z.

The computations build on the fact that stable Adams operations are maps
of E,.-rings, and it therefore suffices to compute them on the generators of the
homotopy groups. There are three different kinds of generator, and for each we
use a different technique. If the generator is

e coming from the sphere, we use S-linearity.

e coming from the underlying nonequivariant spectrum, use the underlying
computations.

e genuinely equivariant, use the homotopy fixed point spectra.

In Section [2, we will review relevant results about the computations of the
RO(Cs)-graded homotopy groups of KR and TMF (3) as well as the construc-
tion of stable Adams operations. The main theorems are proven in Section [3]
We will first deal with K-theory and then analogously handle topological mod-
ular forms.
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2 Recollections

The purpose of this section is to recall the necessary information about the
homotopy groups of the Cs-spectra of Real K-theory and topological modular
forms with I'1(3) level structure. We will only give the parts needed for the
computations in Section [3| and references for more details. We also quickly
recall the existence of stable Adams operations on the relevant spectra.

Let o be the sign representation of Cs. Recall that the representation ring is
RO(C3) ~ Z[o]/(0? —1). The RO(Cs)-graded homotopy groups of interest will
have two generators which have a truly equivariant nature. The first one is the
Euler class of o, which is denoted as a,, cf. [HHRI16, Definition 3.11]. Note that
this class a, corresponds to the inclusion S° — S and lives in degree —o. The
second class is the Euler-like class ug, living in degree 2(1 — o), see [HHR10,
Definition 3.12].

Real K-theory

Let us denote the genuine Chy-spectrum of Real K-theory of [Ati66] by KR.
Moreover, we denote the Bott element by u € mo KU. This has an equivariant
lift w € ﬁfjoKR, i.e., the restriction morphism res¢? : wlcjoKR — w5 KU sends

% to u. Computations of e.g. [Dug05, BGI0l [Grel8] show, that the RO(C5)-
graded homotopy groups WSQKR are generated by the elements:

4y, ui’, W and wo(m):=2uf form e Z (1)
such that 2vg(2) = 4u3,. Note that this notation is from the homotopy fixed
point spectra sequence, and is not meant to imply that this is a product on 7.
The generators of Equation are subject to several relations which we do not
include here, as they are not relevant for our computations. Instead, we depict
the homotopy groups of kR, which give these of KR by inverting @, in Figure
This figure was taken from [Grel8], but the notation was adapted to ours.

Nonequivariantly, stable Adams operations on the spectra KU of complex
and KO of real topological K-theory were first introduced and completely com-
puted by Adams [Ada62]. By [Lurl8l Example 0.0.4] the Cs-action on KU is
given by [—1]: Gm — G, acting on the canonical orientation of G over KU.
Hence, by the discussion in [Dav25bl §6.4], this yields Cs-equivariant stable
Adams operations ¢¥ on KR[1] for k € Z, see also [DL25, Remark 6.7].
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Figure 1: Black circles, squares and lines represent copies of Z, red dots and
lines represent copies of Fo. For more details we refer to [GreIS8| §3].

Topological modular forms of level structure I';(3)

We denote the Borel Co-spectrum of [HMI7, Theorem 2.4] of topological mod-
ular form with I'y(3) level structure by TMF;(3). Its underlying nonequiv-
ariant spectrum is denoted by TMF; (3) with homotopy groups 7, TMF(3) =
Z[3)[a1, a3, A7) [MRQ9, Corollary 3.3]. Here |ai| = 2, |ag| = 6 and A =
a3(a? — 27a3). The equivariant lifts are denoted by @; and a3 and lie in degree
1+ o and 3 + 30, respectively. Moreover, Hill and Meier [HMI17, §4.3] show
that as Ca-spectra tmf1(3)[z_1] =~ TMF(3), where A = @3 (a3 — 27as) is the
equivariant lift of A.

Combining Theorem 4.15] and §13.B] one obtains that

71'32 TMF(3) is generated by the following classes:
4y, @i, a3, Uy, ai(l):=aus, and vo(m):=2ul form € Z. (2)

The same remarks as in the K-theory case hold. A picture of the homotop
groups of tmf(3), which give these of TMF(3) by inverting A, is Figure
which is taken from §13.B].

The Cy-spectrum TMF;(3) has Ch-equivariant stable Adams operations



by 9 e
0L & :
i 5 o
77 e
yere %
° 24
9 8 o .
P4 U/‘ 0,\_/'
6 /.-/
Ve
b 9 o
EARCS AN,
) a
1E
&
o %
o
,,..CZ-‘- (9\ * 4 7
7 * vll Ll\L)} . I.LQUL'

(%
° L
° ° y: C
° ° 20,
° ° o 7/
° ° o pe
° ° °
12
opan

5
° ° ° 0/

Figure 2: Black circles, squares and lines represent copies of Z; red dots represent
copies of Fo, red lines mean a copy of Fa[a;,as] and green lines mean a copy of
Fy[as]. For more details we refer to [GM17, §13.B]. The axes are the same as in
Figure [I]



by [Dav24l Theorem C and Proposition 2.15] and the remarks directly after
these. Let us make this more precise. By [Dav24, Theorem A], there is a
functor O%P: Isog®® — CAlg(Sp). Here, Isog is the 2-category whose objects
are stacks X equipped with an étale map to the moduli stack of elliptic curves
My, which classifies an elliptic curve E over X, and morphisms are pairs
(f, ) of a map of stacks f: X’ — X and an isogeny of elliptic curves ¢: E' —
f*E of invertible degree. The E.-ring TMF;(3) is the image of the moduli
stack M7 (3) of elliptic curves with I';(3)-level structure [MR09, §2] with Cs-
action given by the automorphism (id, [—1]) of (M;(3), E1(3)), where F1(3) is
the universal elliptic curve living over M;(3). By [Dav24, Diagram (2.2)], we
define )™ on TMF; (3)[1] using the endomorphism (id, [n]) of (M;(3), E1(3)) and
applying O%P. In the 2-category Isog, there is a natural 2-morphism between
(id, [n]) o (id, [-1]) =~ (id, [—1]) o (id, [n]) which shows that the maps (id, [n]) are
Cy-equivariant in Isog. Applying O%P then shows that the Adams operations
¢™ on TMF1(3)[1] are Co-equivariant in CAlg(Sp).

3 Computations of Adams operations

In this section, we compute the stable Adams operations on the RO(C5)-graded
homotopy groups of KR and TMF(3).

Real K-theory

Here we compute the effect of stable Adams operations on the RO(C5)-graded
homotopy groups of the Cs-spectrum KR. There is a second Cs-spectrum
related to topological complex K-theory, which is denoted by KU¢, and defined
by Segal [Seg68]. Note that KR # KUg¢,, but there is a map KUg, — KR.
Balderrama [Bal22, Lemma 2.2.2] computed the stable Adams operations for
KUg,, and even for more general KU¢g. This computation and the above map
presumably could be used to recover the next result, but we will use the same
techniques as for Definition [3.2

Theorem 3.1. Let k € Z and x € wf_’f_baKR[%]. Then *(z) = K e
ﬁfjbgKR[%]. In particular, if x is torsion (necessarily 2-torsion), then ¥ (z) =

xX.

Proof. We will implicitly invert k everywhere in the proof. As stable Adams
operations are multiplicative and additive it suffices to show the statement for
the generators a,, u, u3, and vo(m) of Equation .

Recall that a, € 792 KR is the image of a, € 7°2S under the unit S — KR
and that the stable Adams operations 1* are S-linear with *(1) = 1, meaning
they commute with the unit:

1/)k(ag) = ag@[}k(l) = a,.

The Cy-spectrum KR is strongly even by [GMI7, Examples 4.13], i.e. the

morphism resC? : 777?(21 +U)KR — 15, KR = 7y, KU is an isomorphism for all n €



Z. Since restriction maps commute with stable Adams operations by naturality,
the result for @ follows by the classical computation in KU, cf. [Ada62] Corollary
5.2].

Lastly, we compute the Adams operations for the classes u3, and vo(n). For
this we use the well known equivalence KR"“2 ~ KO, see [Ati66]. By Figure
we have isomorphisms

a": g KR = 15 KR = m, KO (3)

given by multiplication. By [Ada62, Corollary 5.2], the 1*-action on , KO is
given by multiplication by k™ in degree 2n. Now compute

Katud, = 9*(atul,) = o* @t (u3,) = k't ¢4 (3,) € TP KR ~ Z.

Since k is invertible and Equation is an isomorphism, this implies that
u3, = ¥*(u3,). The same argument applied to u?™ - vo(m) also shows that

YF(vo(m)) = vo(m), as desired. =

Topological modular forms of level structure I';(3)

The strategy to compute the stable Adams operations on ’/TSQ TMF;(3) is pre-
cisely the same as for Real K-theory.
Theorem 3.2. Let k € Z and z € ﬂgjbaTMFl(Zi)[%]. Then v*(z) = k5 x €

ijbaTMFl(S)[%]. In particular, if © is torsion (necessarily 2-torsion), then

PP (z) = 2.

Proof. Again, k will be implicitly inverted throughout the proof. As stable
Adams operations are multiplicative it suffices to show the statement for the
generators a,, @, @3, Us,, vo(m) and @; (1) of [HMIT7, Theorem 4.15].

Recall that a, € 792TMF,(3) is the image of a, € 7°2S under the unit
S — TMF;(3) and that the stable Adams operations ¥* are S-linear with
¥*(1) = 1, meaning they commute with the unit:

VF(ay) = agp®(1) = a,.
By [HM17, Before Proposition 4.23], TMF;(3) is strongly even, i.e. for all

n € Z the morphism

resC: 7C2 | TMFy(3) = 7%, ) TMFy (3) = 7§, TMF (3) & 1, TMF (3)
is an isomorphism. Combining [MR09) Corollary 3.3] and [Dav24, Theorem B]
yields the result for @; and as.
By étale descent there is an equivalence TMF;(3)"¢2 ~ TMF(3), see
[MRO9] §2], hence, using Figure |2, we have isomorphisms
al: 7% TMF,(3) = n$2TMF(3) = m, TMFy(3) (4)

1 "n(l-0)



given by multiplication. Using [Dav25bl Proposition 6.18] we obtain that the
yF-action on m, TMF((3) is given by multiplication by &" in degree 2n. Now
compute

kajus, = ¥*(@juy,) = v*@)* (u3,) = k°a] - 0" (u3,) € 7ig TMF1(3) ~ Z.

Since k is invertible and Equation is an isomorphism, this implies that
u3, = ¢*(ud,). The same argument applied to @™ - vo(m) and @ - @, (1) also
shows that ¥ (vg(m)) = vo(m) and ¥*(@;(1)) = @, (1), respectively. This ends
the proof. O

Remark 3.3. Note that the computation of 1*(@;(1)) can also be done by ap-
plying the same argument as above to as - @1(1).
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