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Abstract

The C2-spectrum of Atiyah’s Real K-theory is denoted by KR and
the C2-spectrum of topological modular forms of level structure Γ1(3)
by TMF1(3). In this short note we compute the C2-equivariant stable
Adams operations on the RO(C2)-graded homotopy groups of KR and
TMF1(3).

1 Introduction

In the study of the connection between elliptic curves and cohomology theories,
Hopkins [Hop95] constructed the universal elliptic cohomology theory TMF of
topological modular forms. This is the spectrum corresponding to the moduli
stack Mell of elliptic curves. Analog to the situation in classical modular forms,
there exist spectra of topological modular forms of certain level structures. The
moduli stack M0(n), classifying elliptic curves with a chosen cyclic subgroup
of order n, yields the spectrum TMF0(n), and the moduli stack M1(n), which
classifies elliptic curves with a chosen point of exact order n, has associated
spectrum TMF1(n).

Moreover, Adams operations on K-theory proved to be important tools in
the past. Two of the major uses were Adams and Atiyah’s [AA66] proof of
the Hopf invariant one problem using unstable Adams operations and Quillen’s
[Qui72] computation of the algebraicK-theory of finite fields using stable Adams
operations. As topological modular forms are to be viewed as a higher chromatic
analogue of topological K-theory, it is natural to ask for the existence of stable
Adams operations on the different versions of topological modular forms. These
were constructed by Davies [Dav24, Dav25a].

Recall that the C2-action on a complex vector bundle is given by complex
conjugation, which carries over to the spectrum KU of complex K-theory. The
C2-action on the spectrum TMF1(3) is induced by an underlying action as well:
there is a natural (Z/n)×-action on M1(n) given by sending the point x of
order n to [k]x for k ∈ (Z/n)×. It follows that both, KU and TMF1(3), can
be made genuinely equivariant with C2-equivariant stable Adams operations.
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We will denote the C2-spectra by KR and TMF1(3). There is even more to
say: in both cases the endomorphism [−1] induces the endomorphism ψ−1 of
spectra. If ψk is the endomorphism induced by [k] on one of the above spectra,
we even have coherently that ψ−1 ◦ ψk ≃ ψk ◦ ψ−1 and ψk ◦ ψl ≃ ψkl making
the ψk C2-equivariant. These endomorphisms ψk are then called stable Adams
operations.

The goal of this paper is to compute the C2-equivariant stable Adams opera-
tions on the representation graded homotopy groups of these C2-spectra. Since
K-theory and topological modular forms are so closely related it is not surpris-
ing that the result and the strategy for the computations are essentially the
same.

Theorem A (Definition 3.1). Let k ∈ Z and x ∈ πC2

a+bσKR[ 1k ], where σ is the
sign representation of C2. Then

ψk(x) = k
a+b
2 x ∈ πC2

a+bσKR[
1

k
].

In particular, if x is torsion (necessarily 2-torsion), then ψk(x) = x.

Theorem B (Definition 3.2). Let k ∈ Z and x ∈ πC2

a+bσTMF1(3)[
1
k ], where σ

is the sign representation of C2. Then

ψk(x) = k
a+b
2 x ∈ πC2

a+bσTMF1(3)[
1

k
].

In particular, if x is torsion (necessarily 2-torsion), then ψk(x) = x.

The computations build on the fact that stable Adams operations are maps
of E∞-rings, and it therefore suffices to compute them on the generators of the
homotopy groups. There are three different kinds of generator, and for each we
use a different technique. If the generator is

• coming from the sphere, we use S-linearity.

• coming from the underlying nonequivariant spectrum, use the underlying
computations.

• genuinely equivariant, use the homotopy fixed point spectra.

In Section 2, we will review relevant results about the computations of the
RO(C2)-graded homotopy groups of KR and TMF1(3) as well as the construc-
tion of stable Adams operations. The main theorems are proven in Section 3.
We will first deal with K-theory and then analogously handle topological mod-
ular forms.
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2 Recollections

The purpose of this section is to recall the necessary information about the
homotopy groups of the C2-spectra of Real K-theory and topological modular
forms with Γ1(3) level structure. We will only give the parts needed for the
computations in Section 3 and references for more details. We also quickly
recall the existence of stable Adams operations on the relevant spectra.

Let σ be the sign representation of C2. Recall that the representation ring is
RO(C2) ≃ Z[σ]/(σ2 − 1). The RO(C2)-graded homotopy groups of interest will
have two generators which have a truly equivariant nature. The first one is the
Euler class of σ, which is denoted as aσ, cf. [HHR16, Definition 3.11]. Note that
this class aσ corresponds to the inclusion S0 → Sσ and lives in degree −σ. The
second class is the Euler-like class u2σ living in degree 2(1 − σ), see [HHR16,
Definition 3.12].

Real K-theory

Let us denote the genuine C2-spectrum of Real K-theory of [Ati66] by KR.
Moreover, we denote the Bott element by u ∈ π2 KU. This has an equivariant
lift u ∈ πC2

1+σKR, i.e., the restriction morphism resC2
e : πC2

1+σKR → πe
2 KU sends

u to u. Computations of e.g. [Dug05, BG10, Gre18] show, that the RO(C2)-
graded homotopy groups πC2

⋆ KR are generated by the elements:

aσ, u±2
2σ , u and v0(m) := 2um2σ for m ∈ Z (1)

such that 2v0(2) = 4u22σ. Note that this notation is from the homotopy fixed
point spectra sequence, and is not meant to imply that this is a product on π⋆.
The generators of Equation (1) are subject to several relations which we do not
include here, as they are not relevant for our computations. Instead, we depict
the homotopy groups of kR, which give these of KR by inverting u, in Figure 1.
This figure was taken from [Gre18], but the notation was adapted to ours.

Nonequivariantly, stable Adams operations on the spectra KU of complex
and KO of real topological K-theory were first introduced and completely com-
puted by Adams [Ada62]. By [Lur18, Example 0.0.4] the C2-action on KU is

given by [−1] : Ĝm → Ĝm acting on the canonical orientation of Ĝm over KU.
Hence, by the discussion in [Dav25b, §6.4], this yields C2-equivariant stable
Adams operations ψk on KR[ 1k ] for k ∈ Z, see also [DL25, Remark 6.7].
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Z · 1

Z · σ

πC2

⋆ kR

1

v0(1)

v0(−1)

a1
σ

a2
σ

a3
σ

a4
σ

a5
σ

a6
σ

a7
σ

a8
σ

a9
σ

a10
σ

a11
σ

a12
σ

a13
σ

a14
σ

a15
σ

u2
2σ

2u−2
2σ

v0(3)

v0(−3)

u4
2σ

2u−4
2σ

(2, v1)P

u

Figure 1: Black circles, squares and lines represent copies of Z, red dots and
lines represent copies of F2. For more details we refer to [Gre18, §3].

Topological modular forms of level structure Γ1(3)

We denote the Borel C2-spectrum of [HM17, Theorem 2.4] of topological mod-
ular form with Γ1(3) level structure by TMF1(3). Its underlying nonequiv-
ariant spectrum is denoted by TMF1(3) with homotopy groups π∗ TMF1(3) ∼=
Z[ 13 ][a1, a3,∆

−1] [MR09, Corollary 3.3]. Here |a1| = 2, |a3| = 6 and ∆ =
a33(a

3
1 − 27a3). The equivariant lifts are denoted by a1 and a3 and lie in degree

1 + σ and 3 + 3σ, respectively. Moreover, Hill and Meier [HM17, §4.3] show
that as C2-spectra tmf1(3)[∆

−1
] ∼= TMF1(3), where ∆ = a33(a

3
1 − 27a3) is the

equivariant lift of ∆.
Combining [HM17, Theorem 4.15] and [GM17, §13.B] one obtains that

πC2

⋆ TMF1(3) is generated by the following classes:

aσ, a1, a3, u42σ, a1(1) := a1u
2
2σ and v0(m) := 2um2σ for m ∈ Z. (2)

The same remarks as in the K-theory case hold. A picture of the homotopy
groups of tmf1(3), which give these of TMF1(3) by inverting ∆, is Figure 2,
which is taken from [GM17, §13.B].

The C2-spectrum TMF1(3) has C2-equivariant stable Adams operations
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πC2

⋆ tmf1(3)

1

u4
2σ

u8
2σ

u12
2σ

u16
2σ

2 · u−4
2σ

2 · u−8
2σ

2 · u−12
2σ

a1

a3

Figure 2: Black circles, squares and lines represent copies of Z; red dots represent
copies of F2, red lines mean a copy of F2[a1, a3] and green lines mean a copy of
F2[a3]. For more details we refer to [GM17, §13.B]. The axes are the same as in
Figure 1

5



by [Dav24, Theorem C and Proposition 2.15] and the remarks directly after
these. Let us make this more precise. By [Dav24, Theorem A], there is a
functor Otop : Isogop → CAlg(Sp). Here, Isog is the 2-category whose objects
are stacks X equipped with an étale map to the moduli stack of elliptic curves
Mell, which classifies an elliptic curve E over X, and morphisms are pairs
(f, φ) of a map of stacks f : X ′ → X and an isogeny of elliptic curves φ : E′ →
f∗E of invertible degree. The E∞-ring TMF1(3) is the image of the moduli
stack M1(3) of elliptic curves with Γ1(3)-level structure [MR09, §2] with C2-
action given by the automorphism (id, [−1]) of (M1(3), E1(3)), where E1(3) is
the universal elliptic curve living over M1(3). By [Dav24, Diagram (2.2)], we
define ψn on TMF1(3)[

1
n ] using the endomorphism (id, [n]) of (M1(3), E1(3)) and

applying Otop. In the 2-category Isog, there is a natural 2-morphism between
(id, [n]) ◦ (id, [−1]) ≃ (id, [−1]) ◦ (id, [n]) which shows that the maps (id, [n]) are
C2-equivariant in Isog. Applying Otop then shows that the Adams operations
ψn on TMF1(3)[

1
n ] are C2-equivariant in CAlg(Sp).

3 Computations of Adams operations

In this section, we compute the stable Adams operations on the RO(C2)-graded
homotopy groups of KR and TMF1(3).

Real K-theory

Here we compute the effect of stable Adams operations on the RO(C2)-graded
homotopy groups of the C2-spectrum KR. There is a second C2-spectrum
related to topological complex K-theory, which is denoted by KUC2

and defined
by Segal [Seg68]. Note that KR ̸= KUC2

, but there is a map KUC2
→ KR.

Balderrama [Bal22, Lemma 2.2.2] computed the stable Adams operations for
KUC2

, and even for more general KUG. This computation and the above map
presumably could be used to recover the next result, but we will use the same
techniques as for Definition 3.2.

Theorem 3.1. Let k ∈ Z and x ∈ πC2

a+bσKR[ 1k ]. Then ψk(x) = k
a+b
2 x ∈

πC2

a+bσKR[ 1k ]. In particular, if x is torsion (necessarily 2-torsion), then ψk(x) =
x.

Proof. We will implicitly invert k everywhere in the proof. As stable Adams
operations are multiplicative and additive it suffices to show the statement for
the generators aσ, u, u

2
2σ and v0(m) of Equation (1).

Recall that aσ ∈ πC2
−σKR is the image of aσ ∈ πC2

−σS under the unit S → KR
and that the stable Adams operations ψk are S-linear with ψk(1) = 1, meaning
they commute with the unit:

ψk(aσ) = aσψ
k(1) = aσ.

The C2-spectrum KR is strongly even by [GM17, Examples 4.13], i.e. the
morphism resC2

e : πC2

n(1+σ)KR → πe
2nKR = π2n KU is an isomorphism for all n ∈
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Z. Since restriction maps commute with stable Adams operations by naturality,
the result for u follows by the classical computation in KU, cf. [Ada62, Corollary
5.2].

Lastly, we compute the Adams operations for the classes u22σ and v0(n). For
this we use the well known equivalence KRhC2 ≃ KO, see [Ati66]. By Figure 1,
we have isomorphisms

un : πC2

n(1−σ)KR
≃−→ πC2

2nKR = π2n KO (3)

given by multiplication. By [Ada62, Corollary 5.2], the ψk-action on π∗ KO is
given by multiplication by kn in degree 2n. Now compute

k4u4u22σ = ψk(u4u22σ) = ψk(u4)ψk(u22σ) = k4u4 · ψk(u22σ) ∈ πC2
8 KR ≃ Z.

Since k is invertible and Equation (3) is an isomorphism, this implies that
u22σ = ψk(u22σ). The same argument applied to u2m · v0(m) also shows that
ψk(v0(m)) = v0(m), as desired.

Topological modular forms of level structure Γ1(3)

The strategy to compute the stable Adams operations on πC2

⋆ TMF1(3) is pre-
cisely the same as for Real K-theory.

Theorem 3.2. Let k ∈ Z and x ∈ πC2

a+bσTMF1(3)[
1
k ]. Then ψk(x) = k

a+b
2 x ∈

πC2

a+bσTMF1(3)[
1
k ]. In particular, if x is torsion (necessarily 2-torsion), then

ψk(x) = x.

Proof. Again, k will be implicitly inverted throughout the proof. As stable
Adams operations are multiplicative it suffices to show the statement for the
generators aσ, a1, a3, u

4
2σ, v0(m) and a1(1) of [HM17, Theorem 4.15].

Recall that aσ ∈ πC2
−σTMF1(3) is the image of aσ ∈ πC2

−σS under the unit
S → TMF1(3) and that the stable Adams operations ψk are S-linear with
ψk(1) = 1, meaning they commute with the unit:

ψk(aσ) = aσψ
k(1) = aσ.

By [HM17, Before Proposition 4.23], TMF1(3) is strongly even, i.e. for all
n ∈ Z the morphism

resC2
e : πC2

n(1+σ)TMF1(3) → πe
n(1+σ)TMF1(3) ∼= πe

2nTMF1(3) ∼= π2n TMF1(3)

is an isomorphism. Combining [MR09, Corollary 3.3] and [Dav24, Theorem B]
yields the result for a1 and a3.

By étale descent there is an equivalence TMF1(3)
hC2 ≃ TMF0(3), see

[MR09, §2], hence, using Figure 2, we have isomorphisms

an1 : π
C2

n(1−σ)TMF1(3)
≃−→ πC2

2nTMF1(3) = π2n TMF0(3) (4)
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given by multiplication. Using [Dav25b, Proposition 6.18] we obtain that the
ψk-action on π∗ TMF0(3) is given by multiplication by kn in degree 2n. Now
compute

k8a81u
4
2σ = ψk(a81u

4
2σ) = ψk(a81)ψ

k(u42σ) = k8a81 · ψk(u42σ) ∈ πC2
16 TMF1(3) ≃ Z.

Since k is invertible and Equation (4) is an isomorphism, this implies that
u42σ = ψk(u42σ). The same argument applied to a2m1 · v0(m) and a31 · a1(1) also
shows that ψk(v0(m)) = v0(m) and ψk(a1(1)) = a1(1), respectively. This ends
the proof.

Remark 3.3. Note that the computation of ψk(a1(1)) can also be done by ap-
plying the same argument as above to a3 · a1(1).
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